Accepted Manuscript (Uncorrected Proof)

Title: The Impact of Ergonomic Chairs on Clinical and Biomechanical Musculoskeletal Outcomes in the Workplace: A Systematic Review

Authors: Hanieh Khaliliyan¹, Mahmood Bahramizadeh^{2,*}, Morteza Faghih Jouibari³, Majid Ansari⁴, Kavita Batra⁵, Farhad Ghaffari⁶, Arash Sharafatvaziri⁷, Amir Reza Vosoughi⁸, Hicham Khabbache⁹, Francesco Chirico¹⁰

- 1. Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- 2. Neuromusculoskeletal Rehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
- 3. Department of neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- 4. Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- 5. Department of Medical Education and Office of Research, Kirk Kerkorian School of Medicine at UNLV, University of Nevada, Las Vegas, USA.
- 6. Orthopedic & Rehabilitation Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- 7. Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran.
- 8. Foot & Ankle Surgeon, Orthopedic & Rehabilitation Research Center, Department of Orthopedic Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- 9. Department of Psychology, Faculty of Arts and Human Sciences Fès-Saïss, Sidi Mohamed Ben Abdellah University, Fez- Morocco.
- 10. Università Cattolica del Sacro Cuore, Roma, Italy.

To appear in: **Physical Treatments**

Received date: 2025/10/06

Revised date: 2025/10/13

Accepted date: 2025/10/14

First Online Published: 2025/11/05

This is a "Just Accepted" manuscript, which has been examined by the peer-review process and has been accepted for publication. A "Just Accepted" manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. *Physical Treatments* provides "Just Accepted" as an optional service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the "Just Accepted" Website and published as a published article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain.

Please cite this article as:

Khaliliyan H, Bahramizadeh M, Faghih Jouibari M, Ansari M, Batra K, Ghaffari F, et al. The Impact of Ergonomic Chairs on Clinical and Biomechanical Musculoskeletal Outcomes in the Workplace:

A Systematic Review. *Physical Treatments*. Forthcoming 2026. DOI: http://dx.doi.org/10.32598/ptj.2026.189.1

DOI: http://dx.doi.org/10.32598/ptj.2026.189.1

Abstract

Purpose: The current study reviews the impact of ergonomic chairs on clinical and biomechanical outcomes for seated workers.

Methods: We adhered to the PRISMA guidelines to determine article eligibility and evaluated methodological quality using the PEDro scale. The strength of the evidence was appraised following the GRADE framework. A narrative synthesis was then conducted to summarize the extracted data in descriptive form.

Results: 32 randomized controlled trials met the inclusion criteria and were included in the qualitative synthesis, involving a total of 1,637 participants. The review showed that ergonomic chair designs have mixed results for pain reduction, with some improvements but not consistently across studies. Positive and consistent outcomes were observed in comfort enhancement. The impact on disability was not significant, while benefits were noted in reducing spinal shrinkage and altering muscle activation. Furthermore, ergonomic chairs influenced energy expenditure, body kinematics, and pressure distribution, with dynamic and custom-designed systems enhancing trunk muscle activation. Adjustable chair features positively affected joint posture.

Conclusion: The ergonomic chair, especially when dynamic and adjustable, provides comfort and biomechanical support to seated workers, although the benefits regarding pain reduction are inconsistent. These findings suggest that choosing ergonomically designed chairs is a positive step toward workplace wellness. Further research is needed to standardize designs and optimize interventions for various occupational settings.

Keywords: Chair, musculoskeletal disorder, public health, health promotion, sitting posture, sedentary worker

Highlights

- Ergonomic chairs improve seating comfort and positively influence biomechanical parameters.
- The evidence for pain reduction remains inconsistent across studies.

Plain Language Summary

Ergonomic chairs, especially those that are adjustable or allow movement, can make sitting at work more comfortable and support the spine and muscles better. They help reduce spinal compression, improve posture, and change how body weight and pressure are distributed while sitting. However, their effect on reducing pain is not consistent across studies, and they don't appear to significantly reduce disability. Overall, using a well-designed ergonomic chair is a helpful step toward a Accepted Manuscrips healthier workplace.

1. Introduction

Work-related musculoskeletal disorders (WMSDs) encompass a range of inflammatory and degenerative conditions resulting from occupational activities [1]. The twelve-month prevalence of WMSDs in the neck, back, and upper limbs is reported to be 55-69%, 31-54%, and 15-25%, respectively [2]. Every year, close to a million workers give up work owing to musculoskeletal pain and loss of function [3,4].

Factors that have been associated with symptoms of WMSD both modifiable and non-modifiable risks include genetic predisposition and structural deformities of the spine. Modifiable factors include posture, the nature of tasks, work demands, and the physical characteristics of the job [5]. The offices are the workplaces where employees have to spend much time working in a seated position. With more than 45 million computers in the United States alone in the 1990s, there developed more concern about WMSDs [6]. Over 72% of the employees work in a sitting posture in Western countries [7]. It has been established that prolonged sitting in suboptimal posture has been associated with WMSDs [5,8].

Sedentary work may contribute to WMSDs of the spine, likely due to prolonged periods of low static activity in the trunk muscles. For instance, patients with Low Back Pain (LBP) have been reported to exhibit atrophy of the lumbar multifidus and trunk muscles, which are inactive for approximately 30% of sitting time [9-11]. Additionally, patients with LBP often show a reduction in spinal range of motion, similar to other spinal conditions such as spinal stenosis, disc prolapse, and degenerative disc disease [12].

The adjustments in the workplace typically focus on the work surface and the chair [13]. Since the chair directly affects body posture, patients experiencing symptoms of WMSDs from prolonged

sitting are advised to adjust their chairs to utilize ergonomic features. Often, due to environmental constraints, changing the work surface is not feasible, and an adjustable work surface may not be economically viable [5, 13,14]. Therefore, adjusting the chair is often the most accessible step to reduce the likelihood of WMSDs.

Active movements for the intervertebral discs and spinal muscles are superior to maintaining a single static posture [15,16]. Continuous postural changes lead to variations in the activity of the posterior muscles, spinal loading, and trunk-thigh angle [17,18]. These factors are essential for preventing sitting-related LBP, degenerative disc disease, and muscular dysfunction. 24 to 39 percent of LBP report that walking alleviates their low back pain [19,20]. Therefore, dynamic movements between different sections of a chair should also be considered as a potential ergonomic feature.

While laboratory studies have been conducted on the impact of chair features such as seat pan depth, lumbar and full back support, adjustable seat height, and lower arm support on musculoskeletal symptoms in the back as well as the upper and lower extremities, there has not been a systematic study to review and conclude regarding the effects of these interventions on clinical and biomechanical outcomes. This study aimed to review the effect of ergonomic chairs on the clinical and biomechanical outcomes of people who work in a sitting posture.

2. Methods

2.1. PROSPERO registration

The complete protocol for this systematic review can be found on PROSPERO with the registration code CRD42024598129.

2.2. Search strategy

Two reviewers (H.K. and M.B.) independently conducted parallel searches in three electronic databases, including PubMed, Scopus, and Web of Science on 29 October 2024, using the queries outlined in Table 1. These queries were constructed by the principal author (M.B.) based on Population, Intervention, Comparison, and Outcome (PICO) items [21], with synonyms obtained from the MeSH database.

Table 1. The search strategy used in the current review.

Search query	Database	Result
("ergonomic chair"[Title/Abstract] OR "ergonomic seating"[Title/Abstract] OR "office	PubMed	121
chair"[Title/Abstract] OR "adjustable chair"[Title/Abstract]) AND ("musculoskeletal		
outcomes"[Title/Abstract] OR "clinical outcome"[Title/Abstract] OR		
pain[Title/Abstract] OR function[Title/Abstract] OR satisfaction[Title/Abstract] OR		
compliance[Title/Abstract] OR "muscle strength"[Title/Abstract] OR "muscle		
activity"[Title/Abstract] OR posture[Title/Abstract] OR kinematic*[Title/Abstract] OR		
kinetic*[Title/Abstract] OR "biomechanical outcome"[Title/Abstract]) AND		
("workplace"[Title/Abstract] OR "office"[Title/Abstract] OR		
occupation*[Title/Abstract])		
(TS= ("ergonomic chair") OR "ergonomic seating" OR "office chair" OR "adjustable	Web of	180
chair")) AND (TS= ("musculoskeletal outcomes" OR "clinical outcome" OR pain OR	Science	
function OR satisfaction OR compliance OR "muscle strength" OR "muscle activity" OR		
posture OR kinematic* OR kinetic* OR "biomechanical outcome")) AND (TS=		
("workplace" OR "office" OR occupation*))		
TITLE-ABS ("ergonomic chair" OR "ergonomic seating" OR "office chair" OR	Scopus	310
"adjustable chair") AND TITLE-ABS ("musculoskeletal outcomes" OR "clinical		
outcome" OR pain OR function OR satisfaction OR compliance OR "muscle strength"		
OR "muscle activity" OR posture OR kinematic* OR kinetic* OR "biomechanical		
outcome") AND TITLE-ABS ("workplace" OR "office" OR occupation*)		

2.3. Study selection

The PRISMA diagram steps were followed for selecting articles [22]. After removing the duplicated articles, the remaining articles were reviewed based on the following criteria:

- •P: The study population was those who worked in a sitting posture.
- •I: The intervention was chairs with ergonomic design changes.

- •C: The intervention group data were compared with the control or pre-intervention condition.
- •O: All biomechanical and clinical outcomes.
- S: study designs included randomized controlled trials (RCTs).
- •Language: The articles were written in English.
- •Review process: The articles should be peer-reviewed.

The title and abstract of the articles were assessed based on inclusion criteria, followed by a second assessment of the full text of the articles using the same criteria. The selection process was conducted independently by two reviewers, H.K. and M.B., with any conflicts resolved through discussion.

2.4. Methodological quality assessment

The 11-item criteria recommended by the PEDro score were used for quality assessment. Each item was responded to with yes or no and received a score of 1, except for the eligibility criteria. In this method, final quality was determined based on the total score (1-4: poor, 5-6: fair, 7-8: good, and 9-10: excellent) [23]. Two reviewers (H.KH and M.B) performed this step; any conflicts were resolved with input from another reviewer (M.A).

2.5. Data extraction

We extracted the data in the form of standard Excel sheets (2019, Microsoft, USA). The data items were author, year, study design, participant demographics, intervention, follow-up duration, outcomes, assessment tool, and key findings. Three reviewers (H.KH, M. B, and F.CH) double-checked the data entry; another author (K.B) checked the data, and in the case of inconsistency, she made the final decision.

2.6. Data analysis

The GRADE system was used to assess the certainly of the evidence. The study's limitations were downgraded when more than 25% of the samples came from low-quality methods assessed using the PEDro score. Inconsistency was downgraded if effects were in opposing directions, while indirectness was downgraded if the participants, interventions, outcomes, or comparisons of the study did not align with the objectives of this review. Imprecision was downgraded when the sample size was below 400 or if only one single study was included. Publication bias was downgraded when the proportion of significant studies displayed asymmetry [24]. A narrative analysis was performed since data pooling was unfeasible, as there were fewer than three studies with consistent methodologies for each outcome.

3. Results

3.1. Study selection

An automated search yielded 611 references from the databases PubMed, Scopus, and Web of Science. After removing duplicate entries and conducting an initial screening, a total of 32 studies met our inclusion criteria (Figure 1).

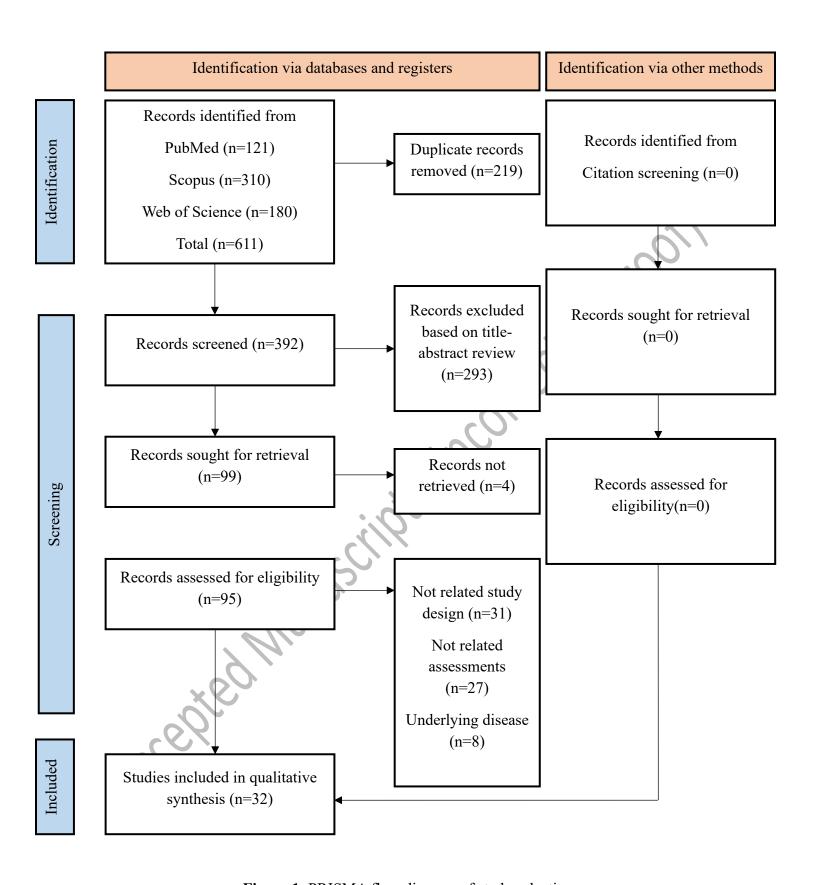


Figure 1: PRISMA flow diagram of study selection

3.2. Methodological quality assessment

Prior to discussion, reviewers H.KH and M.B demonstrated an agreement rate of 89% (314 out of 352) on the PEDro scores. The overall inter-rater reliability yielded a kappa coefficient of 0.79 with a standard error of 0.05. After resolving discrepancies through discussion, the reviewers reached complete consensus, achieving 100% agreement (352 out of 352). For this sample of 32 studies, the scores ranged from a minimum score of 1 to a maximum score of 10, with a general mean score of approximately 5. This mean indicates the overall quality level within the Fair category, reflecting a moderate quality of evidence across the reviewed studies. The distribution of the quality levels further breaks down as follows: 3 articles rated as Excellent [30,34,50], representing 9.37%; 3 rated as Good [26,36,44], which is 9.37%; and 19 articles rated as Poor [28,31-33,35,37,39,41,42,47-49,51-57], making up 59.37%. Further, 7 articles were rated as Fair of the contract of the contrac [27,29,38,40,43,44,46], making up 21.87% of the total. The methodological quality assessment

 Table 2: PEDro methodological quality

Author, year	Eligibility criteria	Random allocation	Concealed allocation	Similar baseline prognosis	Blinded subject	Blinded therapist	Blinded assessor	Less than 15% withdrawals	Intention to treat analysis	Statistical comparison- between group	Point and variability measures	Score	Quality level
Wang et al, 2008 [26]	Yes	Yes	Yes	No	No	No	Yes	Yes	Yes	Yes	Yes	7	Good
Rempel et al, 2007 [27]	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes	Yes	5	Fair
Amick et al., 2003 [28]	Yes	No	No	Yes	No	No	No	Yes	No	Yes	Yes	4	Poor
Cook et al, 2004 [29]	Yes	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	6	Fair
Lengsfeld et al, 2007 [30]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10	Excellent
Lee et al., 2021 [31]	Yes	No	No	No	No	No	Yes	Yes	No	No	Yes	3	Poor
LEGG et al, 2002 [32]	Yes	Yes	No	Yes	No	No	No	No	No	Yes	no	3	Poor
Herbert et al, 2001 [33]	No	No	No	Yes	No	No	No	No	No	Yes	Yes	3	Poor
O'Sullivan et al, 2011 [34]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10	Excellent
Ellegast et al, 2012 [35]	Yes	No	No	Yes	No	No	No	No	No	Yes	Yes	3	Poor
Dalager et al., 2024 [36]	Yes	Yes	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	7	Good
DieËn et al,2001 [37]	Yes	Yes	No	No	No	No	No	No	No	Yes	Yes	3	Poor
Horton et al, 2010 [38]	Yes	No	No	Yes	No	No	Yes	Yes	No	Yes	Yes	5	Fair
Synnott et al, 2017 [39]	Yes	Yes	No	Yes	No	No	No	No	No	Yes	Yes	4	Poor
O'Keeffe et al, 2013 [40]	Yes	Yes	No	Yes	No	No	No	Yes	Yes	Yes	Yes	6	Fair
Luna-Ávila et al, 2019 [41]	Yes	Yes	No	Yes	No	No	No	No	No	Yes	Yes	4	Poor
Vos et al, 2006 [42]	No	Yes	No	Yes	No	No	No	No	No	Yes	Yes	4	Poor
Cardoso et al, 2021 [43]	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Yes	Yes	6	Fair
Kuster et al, 2020 [44]	Yes	No	No	Yes	No	No	No	Yes	Yes	Yes	Yes	5	Fair
Curran et al, 2014 [45]	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	8	Good
Van Geffen et al, 2010 [46]	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Yes	Yes	6	Fair

Channak et al, 2024 [47]	Yes	No	No	Yes	No	No	No	Yes	No	Yes	Yes	4	Poor
Ecemiş et al., 2023 [48]	Yes	No	No	No	No	No	Yes	Yes	No	No	Yes	3	Poor
Kingma et al, 2009 [49]	Yes	No	No	No	No	No	No	Yes	No	Yes	Yes	3	Poor
Makhsous et al, 2003 [50]	Yes	10	Excellent										
Park et al, 2001 [51]	Yes	No	No	Yes	No	No	No	Yes	No	Yes	Yes	4	Poor
Yoo, 2012 [52]	Yes	Yes	No	Yes	No	No	No	No	No	Yes	Yes	4	Poor
Vlaovic et al, 2008 [53]	Yes	No	Yes	no	1	Poor							
Beers et al, 2008 [54]	Yes	No	No	Yes	No	No	No	No	No	Yes	Yes	3	Poor
Ericson et al, 1989 [55]	Yes	No	Yes	Yes	2	Poor							
Purepong et al., 2015 [56]	Yes	Yes	No	Yes	No	No	No	No	No	Yes	Yes	4	Poor
Roossien et al., 2017 [57]	Yes	No	No	Yes	No	No	No	Yes	No	Yes	Yes	4	Poor

3.3. Study Characteristics

The features of the 32 articles included in this review are summarized in Table 3. In the present analysis, office chairs were categorized into three types: (1) Standard Office Chair (SOC), defined as a conventional swivel chair with basic adjustability (e.g., seat height, backrest), used as a control or baseline condition in studies such as [26, 27, 28, 31, 32, 37, 41, 46, 47, 49, 51, 52, 53, 54]; (2) Modified SOC, a standard chair enhanced with specific ergonomic accessories (e.g., lumbar support, forearm supports, acupressure backrests, or posture-sensing systems), as implemented in [26-29, 32-34, 36, 38, 45, 47, 50-52, 56, 57]; and (3) Dynamic Office Chair (DOC), characterized by movable seat pans and/or backrests that allow active sitting (e.g., saddle chairs, exercise balls, chairs with 3D-moving joints, or frontal-plane movement mechanisms), evaluated in [30, 34, 35, 37, 39-41, 43, 44, 48, 49]. Note that some studies employed multiple chair types across experimental conditions [26, 27, 34, 37, 41, 47, 49], and categorization was based on the specific intervention arm described. The total number of participants varied across studies, ranging from a small group of 6 to a larger study with 277 participants. In total, there were 1,637 participants with a mean age of 32.3 ± 8.33 years,

Table 1. Characteristics of the included studies (N=32).

Author, year	Study design	Number and mean age (years) of participants	Intervention vs. control	Follow up duration	Outcomes and assessment tools	Key findings
Wang et al, 2008 [26]	RCT	EG ₁ : N= 84, Mean age:37.5 EG ₂ : N= 98, Mean age:34.9 CG: N= 111, Mean age:36.9	EG ₁ : Curved chair (Modified SOC) EG ₂ : Flat chair (Modified SOC) CG: Standard chair (SOC)	4 months	Pain intensity scores using 5 point numerical scale	The flat chair group had a significantly higher improvement in pain score compared to the control, where the average reduction of 0.43 points on the scale from 0-5 were experienced monthly, while the curved chair group improved only by 0.25 points
Rempel et al, 2007 [27]	RCT	N= 277, Mean age: 37.4	EG1: Curved chair (Modified SOC) EG2: Flat chair (Modified SOC) CG: Miscellaneous items (Modified SOC)	4 months	Pain intensity scores using 5 point numerical scale	Workers using the curved seat pan chair experienced a greater reduction in neck and shoulder pain compared to those using the flat seat pan and control groups
Amick et al., 2003 [28]	RCT	EG: N= 132, Mean age:42 CG: N= 132, Mean age:42	EG: Adjustable seat height, backrest height, and armrest height/Lumbar Support (Modified SOC) CG: No intervention	12 months	Pain and discomfort assessed using the Nordic Musculoskeletal Questionnaire	The EG demonstrated a significant reduction in musculoskeletal symptoms and disability compared to the control group
Cook et al, 2004 [29]	RCT	N= 59, Mean Age: 39	EG: Chair with forearm support (Modified SOC) CG: Chair without forearm support (SOC)	12 weeks	Pain and discomfort assessed using the Nordic Musculoskeletal Questionnaire	The intervention group reported discomfort from 79% at week to 62% at week 6. During the same period, the percentage for the control group that reported increased discomfort rose from 71 to 75%. In the total of all participants, discomfort decreased from 75% to 45% by week 12. Specific reductions in neck, wrist, and forearm discomfort were statistically significant by week 12.
Lengsfeld et al, 2007 [30]	RCT	EG: N= 124, Mean age:40.1 CG: N= 124, Mean age:40.1	EG: An office chair with a motor-driven seat that performs a horizontal rotary movement (DOC). CG: An identical chair without the rotary seat movement (SOC).	2 years	Disability due to lower back pain assessed using the Oswestry Disability Index Lumbar Pain Score assessed using a 100mm Visual Analogue Scale	This study did not find any significant therapeutic advantage in the use of the chair with micro-rotation as compared with a control chair
Lee et al., 2021 [31]	RCT	EG: N=32, mean age:28.8 CG: N=32, mean age: 29.1	EG: Chair's size was adapted for each individual (SOC) CG: no intervention	36 weeks	Pain and discomfort assessed using the Nordic Musculoskeletal Questionnaire	The SOC significantly reduced pain intensity in the neck, shoulder, upper back, and wrist/hand, with no reduction in lower back or elbow pain.
LEGG et al, 2002 [32]	Crossover trial- RCT	EG:42, mean age: NC Cg:42, mean age: NC	CG: Standard shaped typist's chair (SOC) EG: Prototype multi-posture chair (Modified SOC).	2 weeks	Comfort, acceptability, suitability for body build, and other factors related to their experience with the chairs were assessed with a questionnaire (100- point numerical scale)	The SOC was rated higher in terms of comfort and suitability

			After one week, they swapped chairs for the second week.			
Herbert et al, 2001[33]	RCT	EG: N= 36, Mean age: NC CG: N= 36, Mean age: NC	EG: Adjustable Seat Pan Height, Padded Seats, Pneumatic Adjustment Mechanism, Enhanced Support for Upper Extremities) (Modified SOC) CG: -	6 months	Joint position (videotape)	Declines in awkward postures were noted among a subgroup monitored via videotape.
O'Sullivan et al., 2011 [34]	Single session, repeated measures, crossover study	N=12, mean age: 23.3	EG: Chair with an unstable ball positioned according to the degree of movement, without a backrest (Back App chair, Modified SOC). CG: Standard office chair with wheels and no backrest (SOC).	Immediate	Lumbar posture assessed using the wireless posture monitor Trunk muscle activation assessed using surface electromyography with motion lab system MA-300 Discomfort levels assessed using body part discomfort scale	'Back App' chair resulted in less lumbar flexion and lower trunk muscle activation without significant differences in discomfort compared to the standard chair.
Ellegast et al, 2012 [35]	Single session, repeated measures, crossover study	N= 12, mean age: 35.7	-Simple adjustment mechanism for seat pans and backrests -Dynamic chair with pronounced seat pans inclination in both the forward and sideward directions -Dynamic chair with larger backrest inclinations and larger sideward seat pans inclinationsReference chair, 'normal' dynamic office chair, used as a basis for comparison in this studyMore advanced dynamic chair with three-dimensionally moving joint under the seat pan (all DOC)	100 minutes per chair	Measured EMG activity with surface myography, joint angles with motion lab CUELA system	The differences between dynamic chairs and the reference chair regarding were for mean values of muscle activation
Dalager et al., 2024 [36]	Repeated measures, crossover study	N=6, mean age: 46	EG: Custom-built ergonomic chairs (Modified SOC) CG: A regular office chair (SOC)	Time of surgical procedure	Muscle activity measured through surface electromyography Evaluated ergonomic risks during surgery with Rapid Upper Limb Assessment	Slightly higher static activity in the left trapezius muscle when using the ergonomic chair compared to the SOC.
DieËn et al, 2001 [37]	Repeated measures, crossover study	N=10, mean age:21	EG ₁ : Allowed independent rotation of back rest and seat in the sagittal plane (DOC), EC ₂ : Allowed rotation in a fixed ratio of seat-to-back rest rotation (DOC) CG: A chair that doesn't move (SOC)	3 hours	Trunk Movement: Motion analysis Back Muscle Activity: Surface electromyography Spinal Shrinkage with Stadiometer Discomfort Ratings: Participants rated their perceived discomfort during the use of different chairs	Dynamic chairs indeed increased the gain in stature compared to fixed chairs Trunk kinematics and back muscle activity were more influenced by the type of task performed rather than chair type.
Horton et al, 2010 [38]	Repeated measures cross over study	N=30, mean age:25	EG: An office chair with lumbar roll support (Modified SOC)	Single session	Changes in the craniovertebral angle assessed with digitized photographs and analyzed with the NIH ImageJ software.	Significant differences in mean craniovertebral angle were observed with lumbar roll support

			CG: An office chair without			
Synnott et al, 2017 [39]	Single session, repeated measures, crossover study design	N=15, mean age: NC	lumbar roll support (SOC) EG: Forward-inclined saddle chair (Modified SOC) CG: Standard office chair (SOC)	1 hour	Energy expenditure assessed using breath-by-breath ventilation measurements (Jaeger Oxycon Mobile) and a body part discomfort scale with six-point scale	Using a dynamic chair led to a notable rise in energy expenditure compared to sitting on a conventional office chair.
O'Keeffe et al, 2013 [40]	A single session, repeated measures, crossover design	N=21, mean age: 22.1	EG: Forward-inclined saddle chair (Modified SOC) CG: Standard office chair (SOC)	1 hour	Low back discomfort and overall body discomfort using a six-body part discomfort scale	The DOC reduced low back discomfort without increasing overall body discomfort
Luna-Ávila et al, 2019 [41]	RCT	N=30, mean age:21.8	EG: A DOC (a Pilates ball) CG: An ergonomic chair (SOC)	45 minutes	Posture, comfort, and satisfaction as key variables assessed with the General Discomfort Survey questionnaire (five level Likert scale)	The dynamic seat facilitated more movement but could lead to discomfort over prolonged use.
Vos et al, 2006 [42]	Repeated measured, crossover	N=24, mean age: NC	EG: 100 trunk-thigh angles with arm rest 100 trunk-thigh angles without arm rest 110 trunk-thigh angles with arm rest 110 trunk-thigh angles without arm rest 120 trunk-thigh angles without arm rest 120 trunk-thigh angles with arm rest 120 trunk-thigh angles without arm rest CG:Traditional static chairs	Single session	Pressure data collection with digital sensors, analyzed the data with X-sensor software system	Chair design significantly influenced the pressure distribution more than postural changes
Cardoso et al, 2021[43]	Repeated measures design	N=30, mean age: NC	EG: Active sitting using chairs designed to promote movement (two parts cushion, and wide cushion) (DOC) CG: Traditional static chairs (SOC)	1 hour	Pressure pads for COP measurement X-Sensor software for pressure assessment Surface electromyography for muscle activity measurement Discomfort with Subjective Discomfort Questionnaire	There were differences in perceived discomfort between active and static chairs, with active chairs potentially reducing discomfort during prolonged sitting.
Kuster et al, 2020 [44]	Repeated measures design	N=10, mean age:32.2	EG: DOC (was designed to facilitate movement in the frontal plane) CG: Traditional sitting methods (SOC)	Two sessions	Trunk muscle activation (surface electromyography) Trunk Temporal activation pattern (motion capture system)	Dynamic sitting may improve muscle activation patterns compared to static sitting. Participants showed increased activation in trunk muscles when using the dynamic chair.
Curran et al, 2014 [45]	RCT	N=12, mean age: 41.7	EG: Forward-inclined seat pan Allows a hip flexion angle of 55°, Adjustable stability component, Height adjustable (Modified SOC) CG: Controlled at a 90° hip and knee angle, ensuring feet are firmly on the floor	NC	Low back pain, disability (Oswestry Disability Index), psychological distress (Numerical Rating Scale)	No significant interaction between the effects of a backrest and low back discomfort was observed.

Geffen et al, 2010 [46]	Repeated measured design	N=18, mean age: 22.6	EG: Decoupled pelvis adjustment (SOC) CG: Standard sitting posture	NC	Back pressure distribution with pressure mapping device Body kinematic with camera motion capture system (VICON, Oxford, UK)	Decoupled pelvis adjustment significantly influences lumbar motion.
Channak et al, 2024 [47]	Repeated- measures design	N= 30, mean age: 36.0	EG: Dynamic seat cushions (cushion- elevate right hip and Cushion-elevate left hip) (SOC) CG: Static chair (hip and knee positioned in 90 degrees flexion)	1 hour	Number of postural shifts (seat pressure mat device) Trunk muscle activation (surface electromyography) Spinal discomfort (Borg CR-10 scale) Typing task performance (works per minute) Comfort and satisfaction score (interview-based questionnaire with a 5-point Likert scale)	Increased discomfort scores in control condition compared to dynamic cushions; no significant differences in typing performance across conditions.
Ecemiş et al., 2023 [48]	Single group, repeated measures design	N=15, mean age: 22.92 ± 3.40	EG: Ergonomic office chair (DOC) CG: Standard office chair	1hour	Muscle activation of Thoracic Erector Spinae, Transversus Abdominis/Internal Oblique, and Upper Trapezius measured using surface electromyography	Ergonomic chairs may enhance trunk muscle activation, potentially reducing the risk of musculoskeletal disorders in prolonged sitting
Kingma et al, 2009 [49]	Crossover design with repeated measures	N= 10, Mean Age: 21.7	EG: Seated on an exercise ball. CG: A standard office chair (SOC).	2 hours	Electromyography for muscle activity Stadiometer for measuring spinal shrinkage	Sitting on the exercise ball resulted in increased trunk motion compared to the office chair. Spinal Shrinkage: Greater spinal shrinkage was observed after sitting on the exercise ball.
Makhsous et al, 2003 [50]	Crossover design with repeated measures	Participants: 15, Mean Age: 30.4	EG: Adjustments to ischial and back support (Modified SOC). CG: Standard seating conditions without adjustments.		Contact pressure (Pressure scanner) Muscular activity in back muscles (surface electromyography) Sacral inclination and lumbar lordosis (radiography image) Intervertebral space of the lumbar (radiography image)	Contact Pressure Redistribution: Significant decrease in pressure under ischial tubercles and increased load on thighs (P = 0.001). Muscle Activity: Decreased muscular activity in lumbar region when using adjusted back support. Lumbar Lordosis: Increased total and segmental lumbar lordosis when using backrest (P < 0.001). Intervertebral Disc Height: Increased lumbar intervertebral disc heights noted under adjusted conditions.
Park et al, 2011 [51]	Repeated measured	N= 11, Mean Age: 23.8	EG: Posture-Sensing Air Seat Device (Modified SOC) CG: Standard chair (SOC)	20 minutes	Trunk flexion and lateral flexion angles (flexible electro goniometer) Muscle Activity (Electromyography measurements of erector spinae and internal oblique muscles)	Reduced Trunk Flexion: Significant reduction in mean trunk flexion when using the Posture-Sensing Air Seat Device compared to the standard chair. Reduced Lateral Flexion: Lateral flexion was significantly less with the Posture-Sensing Air Seat Device. Increased Muscle Activity: Higher levels of muscle activity (erector spinae and internal oblique muscles) were observed when using the Posture-Sensing Air Seat Device.

Crossover design with repeated measures	N=14, mean age: 29.1	EG: Chair with an unstable dual foot support (two wobble boards) (Modified SOC) CG: Chair without the foot support (SOC)	15 minutes	Trunk flexion angle (A 3D motion analysis system) Muscle activities of the rectus femoris, L4 erector spinae, and external oblique (surface electromyography)	The unstable dual foot support significantly improved posture by decreasing trunk flexion and increasing muscle activity.
Crossover design with repeated measures	N=36, mean age:32.37	EG ₁ : Chairs (SOC) with the PU foam seat filament (PU-foam) EG ₂ : Chairs with the filament of cold-casted PU foam EG ₃ : Chairs with the combination of the pocketed micro springs and the layer of cold-casted PU foam CG ₁ : Chairs with the seat having a framed net	Two days	Comfort and discomfort levels assessed through 17 statements	Significant differences in chair evaluations based on comfort and discomfort
Repeated measured design	N=24, mean age: 26.3	EG ₁ : office chair (SOC) EG ₂ : therapy ball CG: standing	One session	Energy expenditure (a heart rate monitor (Polar Vantage XL, Lake Success, NY) Comfort, fatigue, liking of postures, and productivity measured by total words typed.	Using a therapy ball or adopting a standing posture raised energy expenditure by approximately 4.0 kcal per hour relative to sitting in a standard office chair.
Repeated measured design	N=8, mean age: 30.5	CG: Conventional chair (horizontal seat) EG ₁ : Ullman chair (forwardsloping front half), EG ₂ : Balans chair (forwardsloping seat with knee support) (all SOC)	3 hours	Spinal shrinkage measured as a change in stature height	Significant shrinkage was observed with the Balans chair compared to the conventional chair.
RCT	EG: 32, mean age:36.7 Cg:32, mean age:38.5	EG: an acupressure backrest for one month (SOC) CG: No intervention, but participants could consult a physical therapist.	12 weeks	Pain measured through the Visual Analog Scale (0–10). Disability assessed with the Roland- Morris Disability Questionnaire (0–24).	The smart chair did not significantly change sitting behavior or reduce musculoskeletal discomfort.
Repeated measured design	N=45, mean age 43.1	EG: A smart chair providing tactile feedback on sitting behavior Modified (SOC) CG: Included monitoring without feedback (SOC)	12 weeks	Sitting duration and posture measured using the smart chair Local Musculoskeletal Discomfort assessed via questionnaires Activity tracked with Actigraph GT3X+	The smart chair did not significantly change sitting behavior or reduce musculoskeletal discomfort.
		oroup, CG: Control Group, SOC: Sta	andard Office C	hair, DOC: Dynamic Office Chair, NC: No (Comment
	Repeated measures Repeated measures Repeated measured design Repeated measured design Repeated measured design	design with repeated measures Crossover design with repeated measures Repeated measured design N=8, mean age: 30.5 Repeated measured age:36.7 Cg:32, mean age:38.5 Repeated measured design N=45, mean age 43.1	design with repeated measures Crossover N=36, mean design with repeated measures N=36, mean design with age:32.37 Repeated measures Repeated measured design Repeated M=8, mean age: CG: Conventional chair (horizontal seat) (horizontal seat) (horizontal seat) (EG: Balans chair (forwardsloping seat with knee support) (all SOC) RCT EG: 32, mean age:36.7 Cg:32, mean age:36.7 Cg:32, mean age:38.5 Repeated N=43.1 Repeated N=45, mean age measured design Repeated N=45, mean age measured A3.1 Repeated N=45, mean age Repeated N=45, mean ag	design with repeated measures Crossover N=36, mean design with repeated measures Crossover N=36, mean design with age:32.37 Repeated measures Repeated measures Repeated measured Repeated M=8, mean age: Repeated measured Repeated M=8, mean age: Repeated measured Repeated measured Repeated measured Repeated measured Repeated measured Repeated M=43.1 Repeated M=43.1 Repeated M=45, mean age Repeated M=43.1 Repeated M=45, mean age Repeated M=43.1 Repeated M=45, mean age Repeated M=43.1 Repeated M=45, mean age Repeated M=6; CG: Control Group, SOC: Standard Office Cordinate Controlled Trial, EG: Experimental Group, CG: Control Group, SOC: Standard Office Cordinate Controlled Trial, EG: Experimental Group, CG: Control Group, SOC: Standard Office Cordinate Controlled Trial, EG: Experimental Group, CG: Control Group, SOC	design with repeated measures Crossover N=36, mean eage: 29.1 Foot support (two wobble boards) (Modified SOC) CG: Chair without the foot support (SOC) N=36, mean age: 32.37 PU foam seaf filament (PU-foam) EG;: Chairs (SOC) with the filament of cold-casted PU foam EG;: Chairs with the combination of the pocketed micro springs and the layer of cold-casted PU foam CG;: Chairs with the seat having a framed net Repeated measured design Repeated M=8, mean age: 26.3 EG; therefore the support (GoC) Repeated measured design Repeated M=8, mean age: CG; Conventional chair sloping seat with knee support (galls OC) RCT EG; 32, mean age: 36.7 Cg; 32, mean age: 38.5 public forward-sloping seat with knee support) (galls OC) RCT EG; 32, mean age: 38.5 physical short forward-sloping seat with knee support) (galls OC) Repeated M=43.1 design Repeated M=43.1 box (Group, CG; Control Group, SOC; Standard Office Chair, DOC; Dynamic Office Chair, NC; No to the foliam of the potential seasons age: 36.7 CG; it is not the providing tactile feedback (SOC) Repeated M=43.1 box (Group, CG; Control Group, SOC; Standard Office Chair, DOC; Dynamic Office Chair, NC; No to the control of the providing tactile feedback (SOC) Repeated M=43.1 box (Group, CG; Control Group, SOC; Standard Office Chair, DOC; Dynamic Office Chair, NC; No to the control of the providing tactile feedback (SOC) Repeated M=41.1 box (Group, CG; Control Group, SOC; Standard Office Chair, DOC; Dynamic Office Chair, NC; No to the control of the providing tactile feedback (SOC) Repeated M=41.1 box (Group, CG; Control Group, SOC; Standard Office Chair, DOC; Dynamic Office Chair, NC; No to the control of the providing tactile feedback (SOC) Repeated M=41.1 box (Group, CG; Control Group, SOC; Standard Office Chair, DOC; Dynamic Office Chair, NC; No to the provided control of th

3.4. Effect of ergonomic chair on clinical outcomes

The GRADE assessment of articles related to the effectiveness of ergonomic chairs on clinical outcomes are shown in table 4.

Table 4: Assessment of the evidence for the impact of a SOC, modified SOC, and DOC on clinical outcomes

Outcome	N (Number of Articles)	Risk Of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Quality Of Evidence (GRADE)
For SOC							
Pain	677 (7)	Serious	Not Serious	Not Serious	Serious	None	Eow Low
Discomfort/ Comfort	389 (13)	Serious	Not Serious	Not Serious	Not Serious	None	Moderate
Disability	89 (3)	Not Serious	Not Serious	Not Serious	Serious	None	Moderate
Spinal Shrinkage	28 (3)	Serious	Not Serious	Serious	Serious	Reporting Bias	Very Low
For Modified S						>	
Pain	552 (4)	Serious	Not Serious	Not Serious	Not Serious	None	Moderate Output Description:
Discomfort/ Comfort	293(7)	Serious	Not Serious	Not Serious	Serious	None	Low O
For DOC							
Pain	124(1)	Not Serious	Not Serious	Not Serious	Serious	None	Moderate Output Description:
Discomfort/ Comfort	184(3)	Serious	Not Serious	Not Serious	Serious	None	Low D
Disability	124(1)	Not Serious	Not Serious	Not Serious	Serious	None	Moderate
Spinal Shrinkage	1(10)	Serious	Not Serious	Not Serious	Serious	None	Very Low

3.4.1. Effect of ergonomic chair on pain

One study compared two types of ergonomic chairs: a flat seat design and a curved seat design. The flat chair was more effective in reducing pain, showing a moderate improvement. People using it reported a noticeable drop in pain levels. The curved chair also helped reduce pain, but the improvement was smaller [26]. In a second study, when looking specifically at pain during activities, the flat chair had a very small effect, so small that it may not have made a real difference. However, the curved chair in this case showed a moderate effect, suggesting it helped ease activity-related pain more than the flat chair [27]. A third study tested an acupressure backrest over one

month, comparing it to no treatment at all. The results showed that this backrest had almost no effect on pain. The difference in pain levels between those who used it and those who didn't was so small it likely wouldn't be felt in real life [56].

3.4.2. Effect of ergonomic chair on comfort/discomfort

One study revealed that the use of an ergonomic chair did not demonstrate a significant impact on outcomes as measured by the Nordic Musculoskeletal Questionnaire [28]. However, the presence of forearm support in chairs significantly influenced musculoskeletal discomfort [29]. Comparing raising the right or left hip against a static chair with flexed hips and knees demonstrated a positive impact on comfort and satisfaction [47].

In the study by O'Keeffe et al. (2013), the use of a forward-inclined saddle chair was linked to a significant reduction in low back discomfort compared to SOC [40]. Furthermore, utilizing a dynamic seat, specifically a Pilates ball, significantly reduced scores on the General Discomfort Survey compared to a seat designed with ergonomic criteria [41]. Additionally, two-part cushions significantly reduced discomfort compared to static chairs, as measured by a discomfort-related questionnaire [43].

3.4.3. Effect of ergonomic chair on disability

Lengsfeld et al. (2007) investigated the impact of a chair with horizontal rotary movement compared to a standard chair. Their assessment included the Oswestry Disability Index, but the results did not demonstrate a significant effect [30]. Similarly, an acupressure backrest examined using the Roland-Morris Disability Questionnaire also failed to show a significant effect [56]. Curran et al. (2014) studied a forward-inclined seat pan that allowed hip flexion, contrasting it with a controlled group maintained at a traditional 90-degree hip and knee angle. The Oswestry Disability Index results suggested a small, but potentially noteworthy, effect [45]. Finally,

Roossien et al. assessed the efficacy of a smart chair against a no-intervention group, monitoring activity levels. Their findings, utilizing the Actigraph GT3X+, did not reveal a significant effect [57].

3.4.4. Effect of ergonomic chair on spinal shrinkage

Research indicates that dynamic chairs, particularly those allowing independent or fixed-ratio rotation of the backrest and seat, significantly reduced spinal shrinkage compared to traditional fixed chairs [37].

3.5. Effect of ergonomic chair on biomechanical outcomes

The GRADE assessment of articles related to the effectiveness of ergonomic chairs on biomechanical outcomes are shown in table 4.

Table 5: Assessment of the evidence for the impact of a SOC, modified SOC, and DOC on biomechanical outcomes

Outcome	N (Number of Articles)	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Quality of Evidence (GRADE)
For SOC							
Trunk Muscle Activation	133 (9)	Serious	Not Serious	Not Serious	Serious	Reporting Bias	Very Low
Body Kinematic	110(7)	Serious	Not Serious	Not Serious	Serious	None	Low HOOO
Energy Expenditure	56(2)	Serious	Not Serious	Serious	Serious	Reporting Bias	Very Low
Pressure Distribution	120(5)	Serious	Not Serious	Serious	Serious	Reporting Bias	Very Low
For Modified SOC	C						
Trunk Muscle Activation	43(4)	Serious	Not Serious	Not Serious	Serious	None	Eow HOOO
Body Kinematic	26(2)	Serious	Not Serious	Not Serious	Serious	None	Very Low
Energy Expenditure	15(1)	Serious	Not Serious	Not Serious	Serious	None	Very Low
Pressure Distribution	15(1)	Serious	Not Serious	Not Serious	Serious	None	Very Low
For DOC							
Trunk Muscle Activation	77(5)	Serious	Not Serious	Not Serious	Not Serious	None	Moderate
Body Kinematic	32(3)	Serious	Not Serious	Not Serious	Serious	None	⊕ ⊕○○

3.5.1. Effect of ergonomic chair on muscle activation

One study comparing a dynamic chair with a three-dimensionally moving joint beneath the seat pan to a standard dynamic office chair showed no clear significant impact on trunk muscle activation [35]. Dalager et al. (2024) found that a custom-built ergonomic chair had a positive effect on left trapezius muscle activity compared to conventional office chairs [36]. Ecemiş et al. (2023) compared an ergonomic office chair to a SOC, noting positive effects on the Transversus Abdominis/Internal Oblique and Upper Trapezius muscle activation [48].

Kingma et al. reported that seated posture on an exercise ball resulted in a positive effect on lumbar muscle activation compared to a SOC [49]. Makhsous et al. (2003) found that adjustments to

ischial and back support led to decreased muscular activity in back muscles compared to standard seating conditions [50]. The Posture-Sensing Air Seat Device showed a positive effect on muscle activity when compared to a standard chair [51]. A chair equipped with unstable dual foot support (wobble boards) demonstrated a significant decrease in normalized EMG data for the Rectus Femoris, Lumbar Multifidus, and External Oblique muscles compared to a chair lacking foot support [52]. Finally, a dynamic office chair designed to promote movement in the frontal plane resulted in increased trunk muscle activity compared to traditional static chairs [44].

3.5.2. Effect of ergonomic chair on energy expenditure

One study indicates that using a forward-inclined saddle chair significantly increased energy expenditure compared to a standard office chair [39]. However, a study by Beers et al. (2018) found that using a dynamic office chair resulted in decreased energy expenditure compared to standing [54].

3.5.3. Effect of ergonomic chair on body kinematics

The findings across multiple studies indicate that ergonomic chair features have a significant positive impact on posture-related outcomes [33,34,38,46,50-52]. Adjustments such as lumbar support, pelvis movement, posture-sensing systems, and unstable footrests were consistently associated with improved spinal and joint alignment. Notably, the largest effects were observed for interventions that targeted lumbar posture and head-neck alignment, such as lumbar roll support and the Back App chair [34,46,50-52]. These features not only enhance sitting posture but may also contribute to the prevention of musculoskeletal strain associated with prolonged seated work [33].

3.5.4. Effect of ergonomic chair on pressure distribution

In one study, a trunk-thigh angle of 110 degrees resulted in a moderate positive effect size on pressure distribution compared to SOC [42]. Another study investigated modifications to ischial and back support on a prototype chair, revealing a negative effect compared to normal conditions without adjustments [50].

4. Discussion

This review evaluated 32 studies examining the effects of chairs on clinical and biomechanical musculoskeletal outcomes in sedentary workers. The chair interventions were analyzed both in general and categorized by chair type, specifically SOC, modified SOC, and DOC.

The studies showed significant heterogeneity in the population, intervention, comparison, outcomes, and follow up time. Evidence on the effects of chairs on clinical and biomechanical outcomes such as pain, discomfort/comfort, disability, spinal shrinkage, trunk muscle activation, body kinematics, energy expenditure, and pressure distribution ranged from very low to moderate quality in sedentary workers. Besides, these interventions showed effect sizes ranging from not significant to highly significant for the clinical and biomechanical outcomes. It shows that the findings from 1,637 participants highlight a complex interplay between various chair designs and their impact on health-related measures.

4.1. Chair design and clinical outcomes

The results regarding pain reduction are conflicting, with some ergonomic chair designs demonstrating significant improvements, while findings are not consistently positive across all studies [26,27] (SOC: low-quality; modified SOC: moderate quality; and DOC: moderate quality, as illustrated in Table 4). This variability may be attributed to differences in study design, participant demographics, and intervention durations. In contrast, the results pertaining to the

effect of ergonomic chairs on comfort/ discomfort are consistent and indicate positive outcomes [28,29,40,41,43,47] (SOC: moderate quality; modified SOC: low quality; DOC: low quality, as illustrated in Table 4). The intervention's impact on disability was not significant [30,45,56,57] (SOC: moderate quality; and DOC: moderate quality). Additionally, the intervention resulted in reduced spinal shrinkage [37,49,50,55] (SOC: very low quality; and DOC: very low quality, as illustrated in Table 4).

In a similarity review, Van Niekerk et al. performed their systematic review across various occupations and noted discomfort in several parts of the body. Various works encounter distinct working environments that affect the well-being of employees. However, the methodology of this study is different, but the results of the two studies confirm each other [58].

When selecting a chair, there must be consideration for adjusting both the seat height and seat pan depth according to the user's anthropometric dimensions [59]. Where this is not matched correctly by the chair, impairment may occur in the postural muscles' ability to support it, possibly leading to unusual stress in the neuromuscular system and discomfort [60].

4.2. Chair design and biomechanical outcomes

The use of ergonomic chairs has a significant impact on muscle activation [35,36,44,48-52] (SOC: very low, modified SOC: low quality, and DOC: very low quality, as indicated in Table 5), energy expenditure (SOC: very low, modified SOC: very low quality, as indicated in Table 5), body kinematics (SOC: low, modified SOC: very low quality, and DOC: low quality, as indicated in Table 5), and pressure distribution (SOC: very low, modified SOC: low quality, as indicated in Table 5). Dynamic chairs and custom-designed ergonomic systems demonstrate increased trunk or decreased muscle activation over conventional chairs. More specifically, chair designs like

forward-inclined saddle chairs increase energy expenditure [39,54]. Adjustable features in the ergonomic chair positively relate to joint posture [33,34,38,46,50-52].

The chair seat pans designed with forward-tilting seats that relieve ischial pressure, combined with lumbar support, were associated with an increased lumbar lordosis [50]. Some researches recommended sustained neutral lumbar lordosis during sitting for low back pain. Some studies attempted to modify an office chair to maintain neutral spinal alignment and prevent poor sitting posture [61,62]. However, some studies led to an increase in the cases of trunk muscle activation, along with increased comfort. Certain research indicates that the beginning of fatigue aligns with a low level of trunk muscle activation, around 2–5%, maintained for as brief as 30 minutes in healthy individuals [63].

4.3. Methodological consideration, Limitation, and Recommendation for future research

Lack of robust methodology, especially in terms of concealed allocation and blinding, is evident in these studies. The general characteristics were small sample size and/or a short follow-up in the majority of these studies, making it difficult to generalize reliable findings. Investigations regarding biomechanical and physiological underlying mechanisms via which ergonomic chairs may cause effects on pain and discomfort and further health-related outcomes need exploration among more varied user groups with diverse working settings for estimating wider generalizability and benefits.

5. Conclusion

Results about the effect of ergonomic chairs on pain reduction are mixed. While some chair designs indicated a benefit, others did not have uniformly positive results. By contrast, the effects of ergonomic chairs on comfort and discomfort show consistent positive outcomes. The interventions had no impact on disability, while evidence for a reduction in spinal shrinkage is very low quality.

The use of dynamic chairs and individually designed ergonomic systems has been shown to increase trunk muscle activation when compared with conventional chairs. Forward-leaning saddle chairs increase energy expenditure, while adjustable features in ergonomic chairs have a positive effect on joint posture.

Author Contributions: Conceptualization: HK, MB.; methodology: MB, HK; validation: MB; formal analysis: MB, HK, KB, MA, MFJ; investigation: MB, HK, FG; resources: MB, HK; data curation: HK; writing original draft preparation: HK, MB, MA; writing-review and editing: KB, MB, HK; supervision: MB. All authors have read and agreed to the published version of the manuscript.

Institutional Review Board Statement: Not Applicable

Informed Consent Statement: Not Applicable

Accepted Manusciilä

Acknowledgements: None

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Kaka B, Idowu OA, Fawole HO, Adeniyi AF, Ogwumike OO, Toryila MT. An analysis of work-related musculoskeletal disorders among butchers in kano metropolis, Nigeria. Saf Health Work. 2016;7:218-24
- 2. Wærsted M, Hanvold TN, Veiersted KB. Computer work and musculoskeletal disorders of the neck and upper extremity: A systematic review. BMC Musculoskeletal Disord. 2010;11(79):1-15.
- 3. Almusawi A A H, Al-Hindy H A M. Exploring Back Pain Characteristics: Insights From Hilla, Iraq. Iranian Rehabilitation Journal 2024; 22 (4):605-614
- 4. Acquadro Maran D, Varetto A, Begotti T, Rizzo A, Yıldırım M, Batra K, et al . Consequences and Coping Strategies Among Students and Workers Experiencing Stalking. Iranian Rehabilitation Journal 2025; 23 (2):217-232
- 5. Ali DA, Oukhouya K, Aziz A, Bouhali H, El Khiat A, El Koutbi M, El Houate B, Baja ZA, Khabbache H. Prevalence of musculoskeletal disorders among healthcare professionals: A hospital-based study. Advances in Medicine, Psychology, and Public Health. 2024;1(1):12-25.
- 6. Tittiranonda P, Rempel D, Armstrong T, Burastero S. Effect of four computer keyboards in computer users with upper extremity musculoskeletal disorders. American journal of industrial medicine. 1999 Jun;35(6):647-61.
- 7. Shahbazi A, Mokhtarinia HR, Biglarian A, Gabel CP. The Prevalence of Musculoskeletal Symptoms in Iranian Spinner Workers in the Textile Industry and its Association with Demographic and Lifestyle Characteristics. Iranian Rehabilitation Journal. 2020 Dec 10;18(4):395-404.
- 8. Ziaeefar P, Hatami H, Panahi D, Poursadeghiyan M, Salehi Sahlabadi A. Neck Pain Severity and Work Ability Index: A Study of Tehran Dental Students. Iranian Rehabilitation Journal. 2024 Jun 10;22(2):265-76.
- 9. van Diee'n JH, De Looze MP, Hermans V. Effects of dynamic office chairs on trunk kinematics, trunk extensor EMG and spinal shrinkage. Ergonomics. 2001; 44(7):739–50.
- 10. Vergara M, Page A'. Relationship between comfort and back posture and mobility in sitting-posture, Appl Ergon. 2002; 33(1):1–8.
- 11. Nairn BC, Azar NR, Drake JD. Transient pain developers show increased abdominal muscle activity during prolonged sitting. J Electromyogr Kinesiol. 2013; 23(6):1421–7.
- 12. McGregor A, McCarthy I, Dore' C, Hughes S. Quantitative assessment of the motion of the lumbar spine in the low back pain population and the effect of different spinal pathologies of this motion. Eur Spine J. 1997; 6(5):308–15.
- 13. Bouzaboul M, Abidli Z, Ait Ali D, Rami Y, Amraoui J, Hadri A, et al. Assessing Visual Perception and Working Memory Using Digital Pen in Moroccan Students With Learning Difficulties. Iranian Rehabilitation Journal 2025; 23 (1):105-116
- 14. Kuster RP, Bauer CM, Baumgartner D. Is active sitting on a dynamic office chair controlled by the trunk muscles? PLoS One. 2020 Nov 30;15(11):e0242854.
- 15. Adams MA, Dolan P. Spine biomechanics. J Biomech. 2005; 38(10):1972–83.

- 16. Rabal-Pelay J, Cimarras-Otal C, Berzosa C, Bernal-Lafuente M, Ballestín-López JL, Laguna-Miranda C, Planas-Barraguer JL, Bataller-Cervero AV. Spinal sagittal alignment, spinal shrinkage and back pain changes in office workers during a workday. International Journal of Occupational Safety and Ergonomics. 2022 Jan 2;28(1):1-7.
- 17. Bush TR, Hubbard RP, Design B. A comparison of four office chairs using biomechanical measures. Hum Factors. 2008; 50(4):629–42.
- 18. Harrison DDE, Harrison SO, Croft AC, Harrison DDE, Troyanovich SJ. Sitting biomechanics part I:review of the literature. J Manipulative Physiol Ther. 1999; 22(9):594–609.
- 19. Sadeghi Y, Hatamizadeh N, Shahshahani S, Hosseinzadeh S. Goal Attainment Scale (GAS) Administration Workshop and Its Effects on Job Motivation and Burnout of Pediatric Occupational Therapists. Iranian Rehabilitation Journal 2023; 21 (1):49-56
- 20. van Deursen LL, Patijn J, Durinck JR, Brouwer R, van Erven-Sommers JR, Vortman BJ. Sitting and low back pain: the positive effect of rotatory dynamic stimuli during prolonged sitting. Eur Spine J. 1999; 8:187–93.
- 21. Eriksen MB, Frandsen TF. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: a systematic review. Journal of the Medical Library Association: JMLA. 2018 Oct;106(4):420.
- 22. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj. 2021 Mar 29;372.
- 23. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713-721.
- 24. Brożek JL, Akl EA, Alonso-Coello P, Lang D, Jaeschke R, Williams JW, Phillips B, Lelgemann M, Lethaby A, Bousquet J, Guyatt GH. Grading quality of evidence and strength of recommendations in clinical practice guidelines: part 1 of 3. An overview of the GRADE approach and grading quality of evidence about interventions. Allergy. 2009 May;64(5):669-77.
- 25. Goulet-Pelletier JC, Cousineau D. A review of effect sizes and their confidence intervals, Part I: The Cohen'sd family. The Quantitative Methods for Psychology. 2018 Dec 1;14(4):242-65.
- 26. Wang PC, Ritz BR, Janowitz I, Harrison RJ, Yu F, Chan J, Rempel DM. A randomized controlled trial of chair interventions on back and hip pain among sewing machine operators: the los angeles garment study. Journal of occupational and environmental medicine. 2008 Mar 1;50(3):255-62.
- 27. Rempel DM, Wang PC, Janowitz I, Harrison RJ, Yu F, Ritz BR. A randomized controlled trial evaluating the effects of new task chairs on shoulder and neck pain among sewing machine operators: the Los Angeles garment study.
- 28. Amick III BC, Robertson MM, DeRango K, Bazzani L, Moore A, Rooney T, Harrist R. Effect of office ergonomics intervention on reducing musculoskeletal symptoms. Spine. 2003 Dec 15;28(24):2706-11.
- 29. Cook C, Burgess-Limerick R. The effect of forearm support on musculoskeletal discomfort during call centre work. Applied ergonomics. 2004 Jul 1;35(4):337-42.

- 30. Lengsfeld M, König IR, Schmelter J, Ziegler A. Passive rotary dynamic sitting at the workplace by office-workers with lumbar pain: a randomized multicenter study. The Spine Journal. 2007 Sep 1;7(5):531-40.
- 31. Lee S, De Barros FC, De Castro CS, Sato TD. Effect of an ergonomic intervention involving workstation adjustments on musculoskeletal pain in office workers—a randomized controlled clinical trial. Industrial health. 2021;59(2):78-85.
- 32. Legg SJ, Mackie HW, Milicich W. Evaluation of a prototype multi-posture office chair. Ergonomics. 2002 Feb 1;45(2):153-63.
- 33. Herbert R, Dropkin J, Warren N, Sivin D, Doucette J, Kellogg L, Bardin J, Kass D, Zoloth S. Impact of a joint labor-management ergonomics program on upper extremity musculoskeletal symptoms among garment workers. Applied Ergonomics. 2001 Oct 1;32(5):453-60.
- 34. O'Sullivan K, McCarthy R, White A, O'Sullivan L, Dankaerts W. Lumbar posture and trunk muscle activation during a typing task when sitting on a novel dynamic ergonomic chair. Ergonomics. 2012 Dec 1;55(12):1586-95.
- 35. Ellegast RP, Kraft K, Groenesteijn L, Krause F, Berger H, Vink P. Comparison of four specific dynamic office chairs with a conventional office chair: impact upon muscle activation, physical activity and posture. Applied ergonomics. 2012 Mar 1;43(2):296-307.
- 36. Dalager T, Jensen PT, Winther TS, Savarimuthu TR, Markauskas A, Mogensen O, Søgaard K. Surgeons' muscle load during robotic-assisted laparoscopy performed with a regular office chair and the preferred of two ergonomic chairs: a pilot study. Applied ergonomics. 2019 Jul 1;78:286-92.
- 37. Van Dieën JH, De Looze MP, Hermans V. Effects of dynamic office chairs on trunk kinematics, trunk extensor EMG and spinal shrinkage. Ergonomics. 2001 Jun 1;44(7):739-50.
- 38. Horton SJ, Johnson GM, Skinner MA. Changes in head and neck posture using an office chair with and without lumbar roll support. Spine. 2010 May 20;35(12):E542-8.
- 39. Synnott A, Dankaerts W, Seghers J, Purtill H, O'Sullivan K. The effect of a dynamic chair on seated energy expenditure. Ergonomics. 2017 Oct 3;60(10):1384-92.
- 40. O'Keeffe M, Dankaerts W, O'Sullivan P, O'Sullivan L, O'Sullivan K. Specific flexion-related low back pain and sitting: comparison of seated discomfort on two different chairs. Ergonomics. 2013 Apr 1;56(4):650-8.
- 41. Luna-Ávila GP, González-Muñoz EL. Comparison of Posture, Comfort and Satisfaction Between a Dynamic Seat and a Seat with Ergonomic Criteria. In Advances in Ergonomics in Design: Proceedings of the AHFE 2018 International Conference on Ergonomics in Design, July 21-25, 2018, Loews Sapphire Falls Resort at Universal Studios, Orlando, Florida, USA 9 2019 (pp. 541-550). Springer International Publishing.
- 42. Vos GA, Congleton JJ, Moore JS, Amendola AA, Ringer L. Postural versus chair design impacts upon interface pressure. Applied ergonomics. 2006 Sep 1;37(5):619-28.
- 43. Cardoso MR, Cardenas AK, Albert WJ. A biomechanical analysis of active vs static office chair designs. Applied Ergonomics. 2021 Oct 1;96:103481.

- 44. Kuster RP, Bauer CM, Baumgartner D. Is active sitting on a dynamic office chair controlled by the trunk muscles? PLoS One. 2020 Nov 30;15(11):e0242854.
- 45. Curran M, Dankaerts W, O'Sullivan P, O'Sullivan L, O'Sullivan K. The effect of a backrest and seatpan inclination on sitting discomfort and trunk muscle activation in subjects with extension-related low back pain. Ergonomics. 2014 May 4;57(5):733-43.
- 46. Van Geffen P, Reenalda J, Veltink PH, Koopman BF. Decoupled pelvis adjustment to induce lumbar motion: A technique that controls low back load in sitting. International Journal of Industrial Ergonomics. 2010 Jan 1;40(1):47-54.
- 47. Channak S, Speklé EM, van der Beek AJ, Janwantanakul P. Effect of two dynamic seat cushions on postural shift, trunk muscle activation and spinal discomfort in office workers. Applied Ergonomics. 2024 Oct 1;120:104337.
- 48. Ecemiş ZB, Güzel NA, Çobanoğlu G, Kafa N. Comparing the Effects of Ergonomic and Standard Office Chairs on Trunk Muscle Activation. Journal of Basic and Clinical Health Sciences. 2021;7(2):628-34.
- 49. Kingma I, van Dieën JH. Static and dynamic postural loadings during computer work in females: Sitting on an office chair versus sitting on an exercise ball. Applied Ergonomics. 2009 Mar 1;40(2):199-205.
- 50. Makhsous M, Lin F, Hendrix RW, Hepler M, Zhang LQ. Sitting with adjustable ischial and back supports: biomechanical changes. Spine. 2003 Jun 1;28(11):1113-21.
- 51. Park SY, Yoo WG. Effects of a posture-sensing air seat device (PSASD) on kinematics and trunk muscle activity during continuous computer work. Journal of Physiological Anthropology. 2011 Jul 31;30(4):147-51.
- 52. Yoo WG. Effects of an unstable dual foot support on the trunk flexion angle and RF, L4-ES, EO muscle activities during computer work. Journal of Physical Therapy Science. 2013 Mar 25;25(3):235-6.
- 53. Vlaović Z, Bogner A, Grbac I. Comfort evaluation as the example of anthropotechnical furniture design. Collegium antropologicum. 2008 May 8;32(1):277-83.
- 54. Beers EA, Roemmich JN, Epstein LH, Horvath PJ. Increasing passive energy expenditure during clerical work. European journal of applied physiology. 2008 Jun;103:353-60.
- 55. Ericson MO, Goldie I. Spinal shrinkage with three different types of chair whilst performing video display unit work. international journal of industrial ergonomics. 1989 Apr 1;3(3):177-83.
- 56. Purepong N, Channak S, Boonyong S, Thaveeratitham P, Janwantanakul P. The effect of an acupressure backrest on pain and disability in office workers with chronic low back pain: A randomized, controlled study and patients' preferences. Complementary Therapies in Medicine. 2015 Jun 1;23(3):347-55.
- 57. Roossien CC, Stegenga J, Hodselmans AP, Spook SM, Koolhaas W, Brouwer S, Verkerke GJ, Reneman MF. Can a smart chair improve the sitting behavior of office workers?. Applied ergonomics. 2017 Nov 1;65:355-61.

- 58. van Niekerk SM, Louw QA, Hillier S. The effectiveness of a chair intervention in the workplace to reduce musculoskeletal symptoms. A systematic review. BMC Musculoskel Dis. 2012;13:145.
- 59. Dianat I, Molenbroek J, Castellucci HI. A review of the methodology and applications of anthropometry in ergonomics and product design. Ergonomics. 2018 Dec 2;61(12):1696-720.
- 60. Braganca S, Castellucci I, Costa E, Arezes P, Carvalho M. Anthropometric data for wheelchair users: a systematic literature review. International Journal of Occupational Safety and Ergonomics. 2020 Jan 2.
- 61. Kastelic K, Kozinc Ž, Šarabon N. Sitting and low back disorders: an overview of the most commonly suggested harmful mechanisms. Collegium antropologicum. 2018 Apr 1;42(1):73-9.
- 62. Lis AM, Black KM, Korn H, Nordin M. Association between sitting and occupational LBP. European spine journal. 2007 Feb;16(2):283-98.
- van Dieën JH, Westebring-van der Putten EP, Kingma I, et al. Low level activity of the 63. trunk extensor muscles causes electromyographic manifestations of fatigue in absence of Accepted Manuscript Unico decreased oxygenation. J Electromyogr Kines. 2009;19(3):398-406. doi:10.1016/j.jelekin.2007.